
  

STO-EN-SET-274 5 - 1 

 

 

 
PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM  

Dr. Maarten Uijt de Haag and Mats Martens, M.Sc.  
Institute of Aeronautics and Astronautics 

Flight Guidance and Air Transport 
Marchstrasse 12, 10587 Berlin 

GERMANY 

maarten.uijtdehaag@tu-berlin.de 

ABSTRACT  
In this paper, we will build on the discussion on the integration algorithms in Part 1 and address estimators 
that are well-suited for systems that exhibit a high degree of non-linearity in the measurement and/or system 
(dynamics) equations. Specifically, we will discuss the particle filter and factor graphs. In addition to these 
two estimation approaches, we will discuss their application in integrated navigation systems as well as 
simultaneous localization and mapping (SLAM) methods. 

1.0 MOTIVATION AND BACKGROUND 

Navigation performance is often expressed in terms of its performance parameters: accuracy, integrity, 
availability, and continuity. Accuracy is defined as the degree of conformance between the estimated or 
measured position and/or the velocity of a platform at a given time and its true position or velocity. Integrity, 
on the other hand, is the ability of a navigation system to provide timely warnings to users when the system 
should not be used for navigation. And, whereas continuity is ability of a system to perform its intended 
function without interruption during the intended operation if it did so at the beginning of the operation, 
availability is defined as the ability of the system to provide usable service within the specified coverage area 
[1].  

Depending on the application, the required performance of the navigation capability (i.e., the required 
navigation performance) may differ. For example, the required navigation performance of a manned or 
unmanned aircraft during the landing phase will be more stringent than during its cruise phase. Also, within 
the performance parameters there may be some variation. For example, when using navigation to help 
following a route while driving a car may require decent accuracy but will have no strong requirements with 
respect to integrity as the driver of the vehicle takes over that role. However, in case of the autonomous flight 
of a UAV, the integrity of the solution may have an increased role when used to stay clear of obstacles for 
example.   

Often one source of navigation may not be sufficient to meet all navigation performance parameters associated 
with the mission or application’s operational scenario. A good example is the use of global navigation satellite 
systems, GNSS (e.g., GPS, Galileo, GLONASS, Beidou), which has widely been considered the enabler of 
many high precision application (e.g., agriculture, unmanned aerial vehicles, car-navigation, mobile phones, 
etc.). However, there are limitations to GNSS that have become evident over time as we have increasingly 
come to rely on it for navigation. In challenging environments such as indoor, subterranean, urban areas, under 
foliage, etc., for example, measurements from GNSS are often unavailable or only sparsely available. 
Furthermore, if available, the measurement performance may be deteriorated due to multipath or the lack of 
direct line-of-sight (i.e., only measurements based on reflected signals are available: non-line-of-sight 
reception).  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 2 STO-EN-SET-274 

 

 

If one source of navigation is not sufficient to meet the mission’s required navigation performance, either 
alternative navigation sources must be found such as laser scanners, cameras, beacon-based systems (e.g., 
pseudolites, UWB), and signals of opportunities, or data from multiple sensors (or navigation aids) must be 
combined (i.e., integrated or fused) in such a way that the Required Navigation Performance of the intended 
operation can be met. This is referred to as assured navigation. An example of an integration strategy is 
illustrated in Figure 1-1. In this figure, a core sensor is identified that is available all the time, but not perfect, 
e.g., an inertial navigation system (INS) with a large drift error. Its output is integrated with the outputs of 
other sensors for estimation and correction of the drift and other errors. At the same time, the INS will be there 
when the other sensors are not available and, therefore, bridge any outages.  

 

Figure 1-1: Sensor fusion or integration built around a core-sensor that is always available but requires periodic 
updating or calibration. 

Note that all these integration methods can be applied to cooperative systems that exchange either 
measurement or state estimates and associated covariances either centralized or distributed among the various 
users. In the latter case, one must take care of incorporating the various participant contributions’ covariances 
and appropriately using these to weigh the individual results following the discussion in part 1. 

2.0 DEFINITION OF THE INTEGRATED NAVIGATION PROBLEM 

An important first step, besides the definition of the navigation performance requirements, is the identification 
of the state vector, 𝐱𝐱𝑘𝑘, at time epoch ‘k’, i.e., what parameters must be estimated at each time epoch. This state 
vector may include position, velocity, attitude, errors, etc. When identified, the sensor measurements are 
related to the state vector through the so-called measurement equation. An example, of a typical measurement 
equation is given by:  

 𝐳𝐳𝑘𝑘 = 𝐡𝐡(𝐱𝐱𝑘𝑘) + 𝐯𝐯𝑘𝑘 (1) 

where 𝐡𝐡(∙) is a (non-)linear function of the state vector and 𝐯𝐯𝑘𝑘 is an additive measurement noise vector that is 
often assumed to be a normally distributed vector with covariance matrix 𝐑𝐑, or:  

 𝐯𝐯𝑘𝑘~𝒩𝒩(𝟎𝟎,𝐑𝐑) (2) 

 
Equation (1) is often expressed probabilistically by the so-called likelihood function; a probability density 
function (PDF) that expresses what the measurement (vector) looks like given a state vector 𝐱𝐱𝑘𝑘: 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 3 

 

 

 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘) = 𝒩𝒩(𝐡𝐡(𝐱𝐱𝑘𝑘),𝐑𝐑)  = 𝜂𝜂 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]𝑇𝑇𝐑𝐑−1[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]� (3) 

 
Again Equation (3) assumes a normally distributed random variable. In addition to the measurement equation, 
we also must define the system or state propagation equation which captures the dynamics of the state vector. 
A typical example of this equation is:   

 𝐱𝐱𝑘𝑘 = 𝐠𝐠(𝐱𝐱𝑘𝑘−1) + 𝐰𝐰𝑘𝑘 (4) 

where 𝐠𝐠(∙) is a (non-)linear function of the state vector and 𝐰𝐰𝑘𝑘  is an additive noise vector that represents the 
uncertainty in the system model and is often assumed to be a normally distributed vector with covariance 
matrix  𝐐𝐐, or:  

 𝐰𝐰𝑘𝑘~𝒩𝒩(𝟎𝟎,𝐐𝐐) (5) 

 
Like Equation (3), the state propagation can be expressed probabilistically. 

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1) = 𝒩𝒩(𝐠𝐠(𝐱𝐱𝑘𝑘−1),𝐐𝐐)  = 𝜂𝜂 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1)]𝑇𝑇𝐐𝐐−1[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1) ]� (6) 

 
In a typical estimation problem, the goal is to determine an estimate of the 𝐱𝐱𝑘𝑘, 𝐱𝐱�𝑘𝑘. In part 1 this was achieved 
using Kalman filters, or, Extended or Unscented Kalman Filters (EKF, and UKF) in case of non-linear 
measurement and /or state propagation equations.  

Probabilistically, the best estimate can be obtained from the so-called posterior distribution: the probability 
density of 𝐱𝐱𝑘𝑘 given by a measurement vector 𝐳𝐳𝑘𝑘: 

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝑘𝑘) (7) 

 
In basic filtering, a cost function is used to obtain the best estimate from the posterior density function. Example 
cost functions are the squared error, absolute error, and uniform error, corresponding to the mean,  
median and mode of the posterior, respectively.  

The posterior can be related to the likelihood function using Bayes rule, or: 

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝑘𝑘) =
𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑝𝑝(𝐱𝐱𝑘𝑘)

𝑝𝑝(𝐳𝐳𝑘𝑘) =
𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑝𝑝(𝐱𝐱𝑘𝑘)

∫ 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑝𝑝(𝐱𝐱𝑘𝑘)𝑑𝑑𝒙𝒙∞
−∞ 

= 𝜂𝜂 ⋅ 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑝𝑝(𝐱𝐱𝑘𝑘) (8) 

where 𝑝𝑝(𝐱𝐱𝑘𝑘) is the marginal PDF of 𝐱𝐱𝑘𝑘(a.k.a. the prior as it represents prior knowledge of the state vector) 
and 𝑝𝑝(𝐳𝐳𝑘𝑘) is the marginal PDF of 𝐳𝐳𝑘𝑘 (a.k.a.  the evidence). 

In the previous equations or models, we assumed the so-called Markov property, that states that the current 
measurement vector is only dependent on the current state, and that the current state is only dependent on the 
previous state, or: 

 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱1:𝑘𝑘) = 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘) (9) 

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱1:𝑘𝑘−1) = 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1) (10) 

where 𝐱𝐱1:𝑘𝑘 = 𝐱𝐱1, 𝐱𝐱2,⋯ , 𝐱𝐱k represents the previous states.  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 4 STO-EN-SET-274 

 

 

Rather than filtering, one could also choose to collect all measurements over a time interval and use them to 
estimate the state estimates for all or some epochs within the time interval.  For example, fixed-interval 
smoothers estimate the state for all epochs on a time interval of size 𝑁𝑁 from 𝑘𝑘 − 𝑁𝑁 to 𝑘𝑘.  Alternatively, fixed-
point, and fixed-lag smoothers estimate the state at a fixed point or a fixed delay in the past  [1]. 
Probabilistically, these three smoothers are given by: 

Fixed-interval smoother 𝑝𝑝(𝐱𝐱𝑘𝑘−𝑁𝑁:𝑘𝑘|𝐳𝐳𝑘𝑘−𝑁𝑁:𝑘𝑘) (11) 

Fixed-point smoother 𝑝𝑝(𝐱𝐱𝑙𝑙|𝐳𝐳𝑘𝑘−𝑁𝑁:𝑘𝑘) (12) 

Fixed-lag smoother 𝑝𝑝(𝐱𝐱𝑘𝑘−𝑀𝑀|𝐳𝐳𝑘𝑘−𝑁𝑁:𝑘𝑘) (13) 

where  𝑘𝑘 − 𝑁𝑁 < 𝑘𝑘 −𝑀𝑀 < 𝑘𝑘. 

Bayesian filters, such as the Kalman filters and the particle filter discussed in the next section are based on 
obtaining an expression for the posterior that consists of a prediction and measurement update part, or: 

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳1:𝑘𝑘) = 𝜂𝜂 ⋅ 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘 , 𝐳𝐳1:𝑘𝑘−1)𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳1:𝑘𝑘−1) 

(14) 

 = 𝜂𝜂 ⋅ 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳1:𝑘𝑘−1) 

 = 𝜂𝜂 ⋅ 𝑝𝑝(𝒛𝒛𝑘𝑘|𝒙𝒙𝑘𝑘)� 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘−1,𝒙𝒙𝑘𝑘−1)𝑝𝑝(𝒙𝒙𝑘𝑘−1|𝒛𝒛1:𝑘𝑘−1)𝑑𝑑𝒙𝒙𝑘𝑘−1 

 = 𝜂𝜂 ⋅ 𝑝𝑝(𝒛𝒛𝑘𝑘|𝒙𝒙𝑘𝑘)� 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒙𝒙𝑘𝑘−1)𝑝𝑝(𝒙𝒙𝑘𝑘−1|𝒛𝒛1:𝑘𝑘−1)𝑑𝑑𝒙𝒙𝑘𝑘−1 

In the steps show in Equation (14), we make use of the Bayes theorem, the total probability and Markov 
properties from probability theory. For a typical Bayesian filter, the prediction and measurement update parts 
follow from Equation (14) as follows: 

Prediction 𝑏𝑏𝑏𝑏𝑏𝑏����(𝐱𝐱𝑘𝑘) = � 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱k−1)𝑝𝑝(𝐱𝐱𝑘𝑘−1|𝐳𝐳1:𝑘𝑘−1)𝑑𝑑𝐱𝐱𝑘𝑘−1 (15) 

Update 𝑏𝑏𝑏𝑏𝑏𝑏(𝐱𝐱𝑘𝑘) = 𝜂𝜂 ⋅ 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)𝑏𝑏𝑏𝑏𝑏𝑏����(𝐱𝐱𝑘𝑘) (16) 

The Kalman filter equation can be derived from Equations (15) and (16), by substituting the PDFs by Normal 
distributions with the appropriate means and covariances. The posterior density is often extended by including 
the robot or vehicle’s action, 𝐮𝐮𝑘𝑘, 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝑘𝑘 ,𝐮𝐮𝑘𝑘).  

Note that the covariance intersection (CI) method discussed in Part 1and illustrated using a simulation, can 
also be more generally described using PDFs [4][5]:  

 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝐴𝐴, 𝐳𝐳𝐵𝐵) =
𝑝𝑝𝜔𝜔(𝐱𝐱𝑘𝑘|𝐳𝐳𝐴𝐴)𝑝𝑝1−𝜔𝜔(𝐱𝐱𝑘𝑘|𝐳𝐳𝐵𝐵)

∫ 𝑝𝑝𝜔𝜔(𝐱𝐱𝑘𝑘|𝐳𝐳𝐴𝐴)𝑝𝑝1−𝜔𝜔(𝐱𝐱𝑘𝑘|𝐳𝐳𝐵𝐵)𝑑𝑑𝐱𝐱𝑘𝑘
 (17) 

where 𝐳𝐳𝐴𝐴 and 𝐳𝐳𝐵𝐵 are the measurements from user A and B, respectively, and 𝜔𝜔 ∈ [0,1] is the weight factor 
discussed in Part 1.  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 5 

 

 

3.0 PARTICLE FILTERS 

Particle filters (PF) are typically meant for cases where the measurement and/or the system equation are non-
linear, resulting in sub-optimal or erroneous results when using Kalman filters.  

The PF is based on the principle that, if one would know the posterior, one could draw samples from that PDF, 
plot a histogram of the resulting samples and calculate the sample mean as an estimate for the actual mean, 
providing an approximation of the minimum mean square estimate, 𝐱𝐱�𝑘𝑘 = 𝐸𝐸{𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳1:𝑘𝑘 )} = 𝐸𝐸{𝐱𝐱𝑘𝑘|𝐳𝐳1:𝑘𝑘 }. This 
approach is referred to as sequential importance sampling (SIS) [3], or: 

 𝐱𝐱�𝑘𝑘 = 𝐸𝐸{𝐱𝐱𝑘𝑘|𝒛𝒛1:𝑘𝑘 } = �𝑤𝑤𝑘𝑘(𝐱𝐱𝑘𝑘𝑖𝑖 )𝐱𝐱𝑘𝑘𝑖𝑖
𝑀𝑀

𝑖𝑖=1

 (18) 

where 𝑤𝑤𝑘𝑘(𝐱𝐱𝑘𝑘𝑖𝑖 ) are the relative histogram values, or weights for value 𝐱𝐱𝑘𝑘𝑖𝑖 . The latter are referred to as particles.  
 
Figure 3-1 shows an example of the histogram for 5000 samples drawn from a known posterior distribution. 

 
Figure 3-1: Histogram example for drawing samples from an example (Normally distributed) posterior distribution. 
 
Since the posterior density is often not explicitly available it is impossible to sample directly from that 
distribution. Instead, we can sample from a known, easy-to-sample, proposal or importance distribution ‘q’, 
and determine the ‘histogram’ weights as follows: 

  𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘−1
𝑝𝑝�𝐳𝐳𝑘𝑘�𝐱𝐱𝑘𝑘𝑖𝑖 �𝑝𝑝(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 )
𝑞𝑞(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 , 𝐳𝐳1:𝑘𝑘, )

 (19) 

where 𝑞𝑞’ is referred to as the proposal distribution and its choice is a critical design issue for a successful 
particle filter. The derivation of Equation (19) can be found in [3]. Various requirements exist for a good 
proposal distribution including enough support for the true posterior distribution (heavy-tailed distributions 
are preferred) or the inclusion of recent observations. 

 
Table 3-1: Sequence Importance Sampling (SIS) - Algorithm 

1 Algorithm  �𝐱𝐱𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 �𝑖𝑖=1:𝑁𝑁 = 𝐒𝐒𝐒𝐒𝐒𝐒 ��𝐱𝐱𝑘𝑘−1𝑖𝑖 ,𝑤𝑤𝑘𝑘−1𝑖𝑖 �𝑖𝑖=1:𝑁𝑁, 𝐳𝐳𝑘𝑘�  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 6 STO-EN-SET-274 

 

 

2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝑁𝑁  

3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝐱𝐱𝑘𝑘𝑖𝑖 ~𝑞𝑞(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 , 𝐳𝐳1:𝑘𝑘 , ) Obtain the particles 

4 𝑤𝑤�𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝐳𝐳𝑘𝑘�𝐱𝐱𝑘𝑘𝑖𝑖 �𝑝𝑝(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 )
𝑞𝑞(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 , 𝐳𝐳1:𝑘𝑘 , )

 Compute Importance weights 

5 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

6 𝜂𝜂 = � 𝑤𝑤�𝑘𝑘𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 Compute normalization factor 

6 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝑁𝑁  

8 𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑤𝑤�𝑘𝑘𝑖𝑖 /𝜂𝜂 Normalize the weights 

9 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
 
One example for the proposal distribution is state propagation density, or 𝑞𝑞�𝐱𝐱𝑘𝑘𝑖𝑖 �𝐱𝐱𝑘𝑘−1𝑖𝑖 , 𝐳𝐳1:𝑘𝑘, � = 𝑝𝑝(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 ). 
Substituting this proposal distribution into Equation (19) yields: 

  𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘−1𝑝𝑝�𝐳𝐳𝑘𝑘�𝐱𝐱𝑘𝑘𝑖𝑖 � (20) 

Another popular PF filter is the so-called bootstrap filter or Sampling Importance Resampling (SIR) that 
simplifies the weight selection to: 

  𝑤𝑤𝑘𝑘 = 𝑝𝑝�𝐳𝐳𝑘𝑘�𝐱𝐱𝑘𝑘𝑖𝑖 � (21) 

Once executing the SIS and SIR, it is important to realize that the variance of the importance weights increases 
stochastically over time; Or, in other words, after a certain number of recursive steps most particles have a 
negligible weight. This effect is illustrated when plotting the cumulative sum of the weights over time (see 
Figure 3-2). 

 

 

Figure 3-2: Cumulative sum of weights initially (top-left) and after 1000 iterations (top-right) and the actual 
weight values initially (bottom-left) and after 100 iterations (bottom-right). 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 7 

 

 

The solution to this problem is to re-sample the particles. In the re-sampling process, we keep and multiply the 
particles with high importance weights and discard the particles with low importance weights. More details on 
this process can be found in [3]. The resulting cumulative sum and weights after 100 iterations are shown in 
Figure 3-3. A typical measure to indicate how many particles are effectively participating in “main” part of 
the PDF is: 

  𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒 =
1

∑ �𝑤𝑤𝑡𝑡𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1

 (22) 

 
Figure 3-3: Cumulative sum of weights and weights when using re-sampling after 1000 iterations. 

Consolidating the SIR and the resampling steps, leads to the PF algorithm in Table 3-2. 

Table 3-2: Particle Filter - Algorithm 

1 Algorithm  �𝐱𝐱𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 �𝑖𝑖=1:𝑁𝑁 = 𝑃𝑃𝑃𝑃 ��𝐱𝐱𝑘𝑘−1𝑖𝑖 ,𝑤𝑤𝑘𝑘−1𝑖𝑖 �𝑖𝑖=1:𝑁𝑁, 𝐳𝐳𝑘𝑘�  

2 �𝐱𝐱𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 �𝑖𝑖=1:𝑁𝑁 = 𝐒𝐒𝐒𝐒𝐒𝐒 ��𝐱𝐱𝑘𝑘−1𝑖𝑖 ,𝑤𝑤𝑘𝑘−1𝑖𝑖 �𝑖𝑖=1:𝑁𝑁, 𝐳𝐳𝑘𝑘� Perform SIR filtering 

3 𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒 =
1

∑ �𝑤𝑤𝑡𝑡𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1

 Compute Effective Number of Particles 

4 𝑖𝑖𝑖𝑖  𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑁𝑁𝑡𝑡ℎ𝑟𝑟  

5 .                  �𝐱𝐱𝑘𝑘
𝑗𝑗∗,𝑤𝑤𝑘𝑘

𝑗𝑗�𝑗𝑗=1:𝑁𝑁 = 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 ��𝐱𝐱𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 �𝑖𝑖=1:𝑁𝑁� Resample 

6 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

6 𝐱𝐱�𝑘𝑘 = �𝑤𝑤𝑘𝑘
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝐱𝐱𝑘𝑘
𝑗𝑗  State Estimate 

8 𝐏𝐏𝑘𝑘 = �𝑤𝑤𝑘𝑘
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

(𝐱𝐱𝑘𝑘
𝑗𝑗 − 𝐱𝐱�𝑘𝑘) (𝐱𝐱𝑘𝑘

𝑗𝑗 − 𝐱𝐱�𝑘𝑘)𝑇𝑇     Covariance Estimate 

 
The PF requires many more computations than a typical EKF or even an UKF. Therefore, it is important to 
assess beforehand if the Gaussian assumption is not valid or if the non-linearities in the measurement and 
system equations lead to a posterior that is likely not Gaussian, justifying the selection of a PF to solve the 
problem at hand. 

An example of a problem that is non-linear, but not enough so to warrant a PF, is the local ranging problem 
based on two two-way ranging (TWR) sources at locations (-50km, 50km) and (50km, 50km) with a range 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 8 STO-EN-SET-274 

 

 

noise of about 50m 1-𝜎𝜎 and a constant velocity (CV) system model with a process noise equal to 10m/s. For 
the particle filter 5000 particles were chosen. Figure 3-4 and Figure 3-5 show the results for the EKF and PF, 
respectively, and one can clearly observe that the performance is very similar and that, thus, an EKF 
implementation should be sufficient.   

 

Figure 3-4: Terrestrial ranging: range-based position (left) and velocity (right) estimates using EKF. 

 

Figure 3-5: Terrestrial ranging: range-based position (left) and velocity (right) estimates using PF. 

 

Figure 3-6: EKF versus PF code structure for the ranging beacon example. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 9 

 

 

An example of how the PF differs from the EKF is shown below for the above example using a fragment of 
Python code that was used for its implementation. In the EKF (left side of Figure 3-6), the probability density 
function of the prediction and updates are represented by their mean and covariance (matrix) of normal 
distributions 𝑁𝑁(𝐱𝐱�𝑘𝑘−,𝐏𝐏𝑘𝑘−) and 𝑁𝑁(𝐱𝐱�𝑘𝑘 ,𝐏𝐏𝑘𝑘), respectively. In case of the PF, however, a set of N possible estimates 
(particles) with associated weights, represent the whole PDF (no longer assumed to be Normal or Gaussian). 
In case of the bootstrap PF you assume a Normally-distributed input to obtain the particles of the prediction 
and the filter’s update stages. 

The PF is better suited for problems that are either strongly non-linear or do have underlying PDFs that are not 
Normal in nature. A good example is the terrain referenced navigation (TRN) problem shown in Figure 3-7.  

 

Figure 3-7: (a) Basic terrain referenced navigation concept using terrain elevation database and radar altimeter, 
(b) digital elevation model (DEM) for Samedan, Switzerland with overlaid reference trajectory, (c) regular map of 

Samedan with overlaid trajectory. 

In the implemented TRN, the height above ground level (AGL) measurements from the aircraft’s radar 
altimeter are used in combination with a Digital Elevation Model or DEM (i.e., a terrain database) to 
estimate the user position. The measurement equation is given by: 

  𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅 = ℎ𝑘𝑘 − ℎ𝐷𝐷𝐷𝐷𝐷𝐷(𝐱𝐱𝑘𝑘) + 𝐯𝐯𝑘𝑘 (23) 

where ℎ𝑘𝑘 is the z-component of 𝐱𝐱𝑘𝑘, ℎ𝐷𝐷𝐷𝐷𝐷𝐷(𝐱𝐱𝑘𝑘) is the terrain height at location 𝐱𝐱𝑘𝑘 obtained from a database 
lookup in the DEM. The error 𝐯𝐯𝑘𝑘 consists of the radar altimeter measurement noise and interpolation errors.  

In the example implementation, inertial navigation system information is incorporated into the filter by 
including it as a forcing function in the system equation (i.e., the proposal distribution) or 𝑝𝑝(𝐱𝐱𝑘𝑘𝑖𝑖 |𝐱𝐱𝑘𝑘−1𝑖𝑖 ,𝐮𝐮𝑘𝑘). 
The results of this PF are shown in Figure 3-8. Figure 3-8(a) shows the initial distribution of the particles over 
the search space and a resulting estimate that is way off. Over time, however, many particles further away 
from ownship disappear and the estimate slowly converges to the true location; see Figure 3-8(b) and (c). Then 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 10 STO-EN-SET-274 

 

 

the filter slowly converges with some far away particles still in existence; Figure 3-8(d) and (e). However, the 
filter finally converges with all particles concentrated around the true ownship location. 

 

 
Figure 3-8: (a) Unknown initial position; particles are evenly distributed over the DEM search space, (b) - (c) 

large offsets in the position estimates (magenta triangles) due to the presence of many particles far away from 
ownship, (d) – (f) “far away” particles become sparse, and estimate converges to true location, (g) – (f) 

convergence maintained throughout the remainder of the flight. 

The estimation error and its covariance are shown in Figure 3-9. The convergence of the particles and, thus, 
the estimate can clearly be observed in the results: after about 50 seconds the results are converged to an error 
of around 25m.  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 11 

 

 

 

Figure 3-9: TRN PF estimation error and standard deviation. 

The above example includes the PF performance for a single platform. In case multiple platforms observe the 
same state, multiple state estimates can, again, be fused using methods such as CI. An example of this method 
is discussed in [6]. 

4.0 FACTOR GRAPH-BASED ESTIMATION METHODS 

An alternative to sequential estimation methods such as the EKF and the PF discussed in the previous section, 
is the use of a batch of data (across sensors and/or across time) to obtain the best estimate of the current state 
or sequence of states using the extended posteriors in Equations (11), (12), and (13). The popularity of these 
factor graph-based methods is, in part, based on the availability of a large variety of using non-linear least 
squares solver tools such as g2o [7], Ceres [8], GTSAM [9], SymForce [10] and the various tools available in 
Matlab.  

Using Bayes theorem and the earlier mentioned Markov property, the posterior for a fixed-interval smoother 
of Equation (11) can be re-written as: 

 𝑝𝑝(𝐱𝐱0:𝑘𝑘|𝐳𝐳0:𝑘𝑘) = 𝜂𝜂𝜂𝜂(𝐱𝐱0)� 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘)
𝑘𝑘

 (24) 

where 𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘) and 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1) are given by Equations (3) and (6), respectively, assuming they are Normally 
distributed. 𝑝𝑝(𝐱𝐱0) is the prior of the state vector. Substituting Equations (3) and (6) into (24) and taking the 
negative log of the posterior yields: 

𝐶𝐶 + 𝐱𝐱0𝐏𝐏0−1𝐱𝐱0𝑇𝑇 +
1
2
�[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1)]𝑇𝑇𝐐𝐐−1[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1) ]
𝑘𝑘

+
1
2
�[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]𝑇𝑇𝐑𝐑−1[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]
𝑘𝑘

 (25) 

⟹ 𝐽𝐽(𝐱𝐱1:𝑘𝑘) = 𝐶𝐶 + 𝐱𝐱0𝐏𝐏0−1𝐱𝐱0𝑇𝑇 +
1
2
�𝐹𝐹𝑔𝑔(𝐱𝐱𝑘𝑘,𝐱𝐱𝑘𝑘−1)
𝑘𝑘

+
1
2
�𝐹𝐹ℎ(𝐱𝐱𝑘𝑘,𝐳𝐳𝑘𝑘)
𝑘𝑘

 (26) 

where 𝐹𝐹𝑔𝑔(𝐱𝐱𝑘𝑘 ,𝐱𝐱𝑘𝑘−1) and 𝐹𝐹ℎ(𝐱𝐱𝑘𝑘 ,𝐡𝐡𝑘𝑘) are referred to as the factors. This expression is often visualized as a graph 
where the factors represent constraints imposed by the dynamics model and the measurements. An example 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 12 STO-EN-SET-274 

 

 

of such a factor graph is shown in Figure 4-1. These constraints tie user location at different times to one 
another and to the (in this example) beacon locations.  

 
Figure 4-1: Factor graph: the various factors act as constraints imposed by measurements and knowledge of 

dynamics. 

The factor-based estimation problem can now be formulized as an optimization problem, also known as factor 
graph optimization (FGO), that tries to find the sequence of user locations: 

 𝐱𝐱�1:𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝐱𝐱1:𝑘𝑘

𝐽𝐽(𝐱𝐱1:𝑘𝑘) (27) 

In essence, the optimization tries to figure out what sequence of states, 𝐱𝐱�1:𝑘𝑘, explains the obtained 
measurements the best given an underlying model of the vehicle’s motion. The solution to equation (27) can 
be obtained using a variety of approaches from the non-linear least squares solver literature such as the Gauss-
Newton and Levenberg-Marquardt (LM) methods. Specifically, for Simultaneous Localization and Mapping 
(SLAM) and Bundle Adjustment (BA), various better performing and efficiently implemented approaches to 
solving the above non-linear least squares problem have been proposed like, for example, g2o in [7] and iSAM 
in [9]. 

The results for a 3D simulation are shown in Figure 4-2 and Figure 4-3. This example simulates a 3D UAV 
trajectory consisting of 5 locations. During the flight, the UAV makes range measurements to 6 ranging 
beacons, resulting in 6 factors for each of the 5 locations. The ranging factor is given by:  

 𝐹𝐹𝑖𝑖,𝑏𝑏𝑙𝑙 = �𝜌𝜌𝑖𝑖,𝑏𝑏𝑙𝑙 − �𝐫𝐫𝑏𝑏𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖�� 𝜎𝜎𝑖𝑖,𝑏𝑏𝑙𝑙 �  (28) 

where 𝜌𝜌𝑖𝑖,𝑏𝑏𝑙𝑙 is the range measurement from UAV ‘i’ to beacon ‘l’, 𝐫𝐫𝑏𝑏𝑙𝑙 is the location of beacon ‘l’, 𝐫𝐫𝑛𝑛,𝑖𝑖 is the 
location of UAV ‘i’, and 𝜎𝜎𝑖𝑖,𝑏𝑏𝑙𝑙 is the nominal standard deviation of the ranging measurement. The standard 
deviation 𝜎𝜎𝑖𝑖,𝑏𝑏𝑙𝑙 may be different for each UAV position as it can depend on the individual ranging radio 
performance or the distance from the user to the beacon.  In this example, the ranging standard deviation ranges 
from 5cm to 20 cm based on the actual performance of Ultra-wideband (UWB) range radios used by the 
authors in their research UAV platforms. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 13 

 

 

The initial positions 𝐱𝐱0 through 𝐱𝐱5 are set to the origin of the local coordinate frame as shown in Figure 4-2 
on the left side. Figure 4-2 (right) and Figure 4-3 (left and right) show the results after iteration 6, 9 and 13, 
respectively. After 13 iterations, the convergence criterion has been met and the trajectory estimate 𝐱𝐱�0:5 
finalized. 

      
Figure 4-2: Beacon-based navigation results: (left) initial values for the trajectory; (right) trajectory estimate for 

iteration 6. 

The ranging factor in Equation (32), could also be modified to reflect the Global Navigation Satellite System 
(GNSS) and used to compute GNSS position and trajectories.  

 𝐹𝐹𝑖𝑖,𝑔𝑔𝑙𝑙 = �𝑝𝑝𝑝𝑝𝑖𝑖,𝑔𝑔𝑙𝑙 − �𝐫𝐫𝑔𝑔𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖� − 𝛿𝛿𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐� 𝜎𝜎𝑝𝑝𝑝𝑝,𝑔𝑔𝑙𝑙�  (29) 

where 𝑝𝑝𝑝𝑝𝑖𝑖,𝑔𝑔𝑙𝑙 is the pseudorange measurement from UAV ‘i’ to satellite ‘l’, 𝐫𝐫𝑔𝑔𝑙𝑙 is the location of satellite ‘l’ at 
the relevant epoch, 𝐫𝐫𝑛𝑛,𝑖𝑖 is the UAV position, 𝛿𝛿𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ist the user clock offset, and 𝜎𝜎𝑝𝑝𝑝𝑝,𝑔𝑔𝑙𝑙  is the standard deviation 
of the pseudorange measurement. Note that for standalone GNSS position calculations, one should use the 
ordinary least squares (OLS), weighted least squares (WLS), or an Extended Kalman filter (EKF) as it is 
computationally more efficient. However, when integrating GNSS with other sensors for which factors can be 
setup, the factor-based descriptions may be more appropriate. 

 

Figure 4-3: Beacon-based navigation results: (left) trajectory estimate for iteration 9; (right) trajectory estimate 
for final iteration 13. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 14 STO-EN-SET-274 

 

 

Figure 4-4 (left) shows the results of the factor-graph-based method using GNSS pseudoranges. Basically, the 
results are identical as when we used a WLS solution.  

 

Figure 4-4: Example of computing a GNSS trajectory using factors rather than a WLS for a UAV flight in the TU 
Berlin UAV flight test area: (left) pseudorange-based positioning; (right) sequential carrier-phase based dead-

reckoning. 

In addition, we implemented a carrier-phase based position change estimator using the factor that relates 
changes in UAV position to sequential difference in carrier-phase measurements, or: 

 𝐹𝐹𝑖𝑖,𝑠𝑠𝑠𝑠𝑙𝑙 = �𝑠𝑠𝑠𝑠𝑖𝑖,𝑔𝑔𝑙𝑙 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐞𝐞𝑔𝑔𝑙𝑙,,𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ Δ𝐫𝐫𝑛𝑛,𝑖𝑖 − 𝛿𝛿𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐� 𝜎𝜎𝑠𝑠𝑠𝑠,𝑔𝑔𝑙𝑙�  (30) 

where 𝐞𝐞𝑔𝑔𝑙𝑙,,𝑝𝑝𝑝𝑝𝑝𝑝 is the unit vector pointing to the GNSS satellite from the previous epoch, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a Doppler 
compensation term, 𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is a change in geometry compensation term, and  Δ𝐫𝐫𝑛𝑛,𝑖𝑖 = 𝐫𝐫𝑛𝑛,𝑖𝑖(𝑡𝑡𝑘𝑘)− 𝐫𝐫𝑛𝑛,𝑖𝑖(𝑡𝑡𝑘𝑘−1). 
More details on these compensation terms can be found in [12]. 

Rather than a state vector that contains only the user position, factor graph-based methods often include the 
user pose, i.e., both the user position and the orientation. The user’s absolute pose is defined by the orientation 
of user ‘i’ with respect to the navigation frame, 𝐑𝐑𝑛𝑛 𝑏𝑏𝑖𝑖⁄ , part of the rotation group 𝐒𝐒𝐒𝐒(3), and its position in the 
navigation frame, 𝐫𝐫𝑛𝑛,𝑖𝑖 ∈ ℝ3, given by the matrix: 

 𝐓𝐓𝑛𝑛 𝑏𝑏𝑖𝑖⁄ = �𝐑𝐑𝑛𝑛 𝑏𝑏𝑖𝑖⁄ 𝐫𝐫𝑛𝑛,𝑖𝑖
0 1

� (31) 

The pose 𝐓𝐓𝑛𝑛 𝑏𝑏𝑖𝑖⁄  is part of the so-called  𝐒𝐒𝐒𝐒(3) group of rigid body motions and its manipulation follows Lie 
algebra [13] which must be considered when deriving the Jacobians used for the optimization process.  

5.0 SIMULTANEOUS LOCALIZATION AND MAPPING 

In addition to estimating the PNT-related state vector, it may often be necessary to simultaneously derive a 
map of the user or vehicle’s surroundings.  This map can then be used for collision avoidance, path planning, 
or it may just be one of the end-products of the navigation process. The approach of estimating pose and map 
at the same time is referred to as Simultaneous Localization and Mapping, or SLAM. Whereas in localization, 
the user is only interested in estimating state vector consisting of the position, velocity or pose (e.g., 𝐱𝐱 =



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 15 

 

 

[𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜑𝜑,𝜃𝜃,𝜓𝜓]𝑇𝑇), SLAM methods estimate a state vector 𝐲𝐲 that includes both the pose, 𝐱𝐱, and the map, 𝐦𝐦; 
or: 

 𝐲𝐲𝑘𝑘 = �𝐱𝐱𝑘𝑘𝐦𝐦� (32) 

In this equation, the subscript ‘k’ has been included to indicate the time epoch. 

Both feature-based and featureless SLAM approaches exist. Whereas, in case of feature-based SLAM, the map 
consists of discrete features in the environment, the map in featureless SLAM is represented otherwise. 
Examples of maps in featureless SLAM are occupancy grids.  

5.1 Feature-based SLAM 
For example, some earlier SLAM methods such as the one described in [14] describes a method that takes 2D 
laser scans of the environment, extracts tree features from the laser scans using a predefined model of the trees, 
and then represents the trees by points in the map. The filter used to estimate the pose and the map 
simultaneously is an information filter [15][16] discusses several aspects of SLAM that must be considered, 
including observability, convergence, sensor and process models, consistency, information exploitation and 
efficiency.  

Figure 5-1 illustrates the basic principle of feature-based SLAM using a 2D laser scanner. Figure 5-1 shows 
the initial 2D pose 𝐱𝐱 = [𝑥𝑥 𝑦𝑦 𝜓𝜓  ]𝑇𝑇 of the platform (i.e., robot) and the 6 point features, 𝐦𝐦1 =
[𝑚𝑚𝑥𝑥,1 𝑚𝑚𝑦𝑦,1 ]𝑇𝑇 through 𝐦𝐦6 = [𝑚𝑚𝑥𝑥,6 𝑚𝑚𝑦𝑦,6 ]𝑇𝑇 in the environment. At time epoch 𝑡𝑡1, features 𝐦𝐦�1 and 𝐦𝐦�2 are 
detected in the laser scan. As the feature extraction process introduces measurement errors, both map entries 
will have an associated uncertainty visualized by their covariance ellipses.  Next, a dynamics model for the 
user is used to predict the platform position. 

 𝐱𝐱𝑘𝑘+1− = 𝑔𝑔(𝐱𝐱𝑘𝑘 ,𝐮𝐮𝑘𝑘+1) (33) 

where 𝐮𝐮𝑘𝑘+1 is the control input. Note that in SLAM, the control input is often provided by odometer, inertial 
measurements and/or a model of the vehicle. This is different from typical implementations in the integrated 
navigation community, where the inertial measurements are considered in the measurement equations of the 
filter, rather than the state propagation equations. 

 

Figure 5-1: Basic principle of feature-based SLAM. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 16 STO-EN-SET-274 

 

 

As illustrated in Figure 5-1, the prediction step introduces uncertainty, 𝐏𝐏𝑥𝑥𝑥𝑥−   attributed to uncertainty in the 
control inputs or dynamics model. Next (Figure 5-1d), the prediction is combined with the measurements at 
time-epoch 𝑡𝑡2 to estimate feature locations features 𝐦𝐦�3 and 𝐦𝐦�4, and state estimate 𝐱𝐱�2. Note that the uncertainty 
of these features is larger than  𝐦𝐦�1 and 𝐦𝐦�2, since it includes both the pose uncertainty and the laser-
measurement uncertainty. Figure 5-1e shows the results of the next prediction step and the resulting uncertainty 
ellipse. In Figure 5-1e, the laser-scanner on the platform observes features 𝐦𝐦�5 and 𝐦𝐦�6 and re-observes feature 
𝐦𝐦�3. Revisiting feature 𝐦𝐦3 causes a reduction in covariance of the related state variables (𝐱𝐱3,𝐦𝐦�3, 𝐦𝐦�4). At a 
larger scale this is referred to as loop closure and can lead to significant reduction of the estimate covariance 
when parts of the environment are re-visited after long periods of time. During the steps show in Figure 5-1, 
the dimension of the state vector 𝒚𝒚 and corresponding covariance matrix, 𝐏𝐏, increases with every new map 
feature that is added. Examples of an extended Kalman filter (EKF) and an information filter (IF) based SLAM 
implementation can be found in [14] and [15], respectively. With many more in the SLAM literature. 

An important step in feature-based SLAM is the data association process. One data association approach 
calculates the Mahalanobis distance (i.e., the normalized squared innovation), 𝑀𝑀𝑖𝑖𝑖𝑖, from each observed feature 
‘i’ to each map feature ‘j’. Typically, a statistical threshold (or gate) for 𝑀𝑀𝑖𝑖𝑖𝑖 is defined against which 
associations are tested: if the measurement is within this so-called tracking gate, the association is valid. In 
case the innovation is Gaussian distributed, 𝑀𝑀𝑖𝑖𝑖𝑖 is 𝜒𝜒2 distributed. A possible threshold could be 𝑀𝑀𝑖𝑖𝑖𝑖 < 𝛾𝛾 = 6. 
For this value 𝑃𝑃𝜒𝜒2(𝑀𝑀𝑖𝑖𝑖𝑖 ≤ 6)  = 0.95. In some cases, multiple measurements fall within a tracking gate, in 
which case, additional rules must be established to identify the correct association. One example would be the 
nearest-neighbor rule, which identifies the measurement with the smallest Mahalanobis distance as the correct 
association. 

For large maps (i.e., a great number of features and, thus, a large state vector and covariance matrix), it will be 
computationally infeasible to implement an EKF or IF. Various methods have been investigated to deal with 
this increase in dimensionality. Examples include the use of sub-maps, the removal of landmarks that do not 
have to be further estimated, covariance intersection (CI) methods, and sparse extended information filters 
(SIEF).  

A PF feature-based SLAM implementation has also been implemented as one of the earlier feature-based 
implementations [17]. These methods exploit the fact that knowledge of the platform’s true path would render 
the position of M features or landmarks conditionally independent, or: 

 𝑝𝑝(𝐱𝐱𝑘𝑘 ,𝐦𝐦|𝐳𝐳𝑘𝑘 ,𝐮𝐮𝑘𝑘) = 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝑘𝑘 ,𝐮𝐮𝑘𝑘)𝑝𝑝(𝐦𝐦|𝐱𝐱𝑘𝑘 , 𝐳𝐳𝑘𝑘) = 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐳𝐳𝑘𝑘 ,𝐮𝐮𝑘𝑘)���������
Pose

�𝑝𝑝(𝐦𝐦𝑖𝑖|𝐱𝐱𝑘𝑘 , 𝐳𝐳𝑘𝑘)
𝑀𝑀

𝑖𝑖=1�����������
Individual features

  (34) 

This factorization is referred to as Rao-Blackwellization. FastSLAM is a SLAM method that exploits this 
factorization and combines it with a participle filter (PF). The result is a filter in which each particle consists 
of a 2D pose vector and M simple 2D Kalman filters for each of the landmarks.  

Most recent approaches use FGO to solve the feature-based SLAM problem. In these SLAM methods, the 
measurements and control inputs are stored in a graph-like structure and optimized using a linear solver. Note 
that the factors are a function of both the state vector and the features stored in the map (e.g., bearing or range 
measurements to the features). Example graph-based SLAM methods are GraphSLAM [15], iSAM [18], and 
g2o [7]. Often, the graph is built up while data is being collected from the sensor in the so-called front-end 
processor (see Figure 5-3). This front-end could calculate an initial estimate of the platform trajectory and 
map, perform data association, and build the factor graph. The back-end of the processor then solves the factor 
graph for the optimal trajectory and map. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 17 

 

 

 

Figure 5-3: Front-end and back-end processing for graph-based SLAM methods. 
 

5.2 Featureless SLAM 
Instead of representing the observed environment by features, featureless methods represent the environment 
by alternative means such as parametric models, surfaces, meshes and occupancy grids. Grid based mapping 
was first introduced for sonar sensors [19] and followed by the concept of occupancy grid in [20]. The latter 
is also referred to as an evidence grid.  

 

Figure 5-4. (a) through (d) Basic principle of forming an occupancy grid (grey: misses, black: hits): (e) Example 
of an occupancy grid with a superimposed aerial robot trajectory. 

In occupancy grid-based methods using, for example, laser range scanners, the range measurements are used 
to determine what areas of the user’s environments are occupied. The basic principle of forming the occupancy 
grid is illustrated in Figure 5-4a-d for multiple time epochs and a single laser beam.  A 2D grid with spatial 
resolution Δ𝑥𝑥,Δ𝑦𝑦 is defined initially. Next, treat the measurements, 𝐳𝐳, as a beam rather than a point, and find 
all cells of the grid that are traversed by this beam and identify those either as ‘free’ (gray) or as an ‘end-point’ 
(black). For known pose estimates, 𝐱𝐱�𝑘𝑘 , this process can be continued for each time epoch. Figure 5-4e shows 
an example of an occupancy grid obtained by using a 2D laser scanner on an indoor UAS. The white areas in 
the example are “undiscovered,” whose status can be occupied or not, the grey areas are unoccupied (referred 
to as a “miss”) and the black cells indicate where a laser beam “hit” an object indicating an edge between 
occupied and unoccupied areas. It is important to define a good model of the sensor (e.g., laser or sonar) when 
identifying each traversed cell. This 2D grid could be expanded to a 3D grid and represented using voxels or 
an octree, but computational complexity should be considered in that case. 

Estimating the platform’s pose based on an occupancy grid, typically follows the following steps: 

1)  Grid estimation: build a local map from a laser scan. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 18 STO-EN-SET-274 

 

 

2)  Matching and outlier rejection: match the local map or laser scan against a target map (or submap), 𝐦𝐦𝑘𝑘. 
The target map could be a map based on previous sensor observation or an a priori map available to the 
platform.  

3)  Optimization: minimize an error metric function to obtain the motion or pose estimates. 

The matching process is illustrated in Figure 5-5. Suppose we have a map based on all measurements so far, 
𝐦𝐦, given by the shown occupancy grid. Furthermore, we have predicted the platform pose based on, for 
example, odometer or inertial measurements, 𝐮𝐮𝑘𝑘, or a dynamics model  𝐱𝐱�𝑘𝑘− = 𝑔𝑔(𝐱𝐱�𝑘𝑘−1 ,𝐮𝐮𝑘𝑘).  Now, suppose 
we receive three laser range measurements, 𝐳𝐳𝑘𝑘, corresponding to the three “rays” in Figure 5-6. Figure 5-6 (a) 
through (d) show four examples of choices for the pose estimate 𝐱𝐱�𝑘𝑘: 𝐱𝐱�𝑎𝑎,𝑘𝑘 ,𝐱𝐱�𝑏𝑏,𝑘𝑘 ,𝐱𝐱�𝑐𝑐,𝑘𝑘  and 𝐱𝐱�𝑑𝑑,𝑘𝑘.  

 

Figure 5-5: Pose estimation based on matching the laser scan against available map, 𝐦𝐦𝐤𝐤. 

For each of these choices you can calculate the map that would result from these measurements: 

 m�z = h−1[x(𝑡𝑡𝑘𝑘), z(𝑡𝑡𝑘𝑘)] (35) 

Next, the distance between this map and the existing map can be established by finding the closest occupied 
grid element. For larger distances, the likelihood that there is a match between this measurement and the map 
becomes smaller. The likelihood function can, thus, be modelled as a function of 𝑑𝑑. A normal distribution 
could be used for this relationship, 𝒩𝒩(𝑑𝑑,𝜎𝜎2). Given all measurements, the likelihood function of all 
measurements can be approximated as. 

 

𝑝𝑝(𝐳𝐳(𝑡𝑡𝑘𝑘)|𝐱𝐱(𝑡𝑡𝑘𝑘),𝒎𝒎) ≈�𝒩𝒩(𝑑𝑑,𝜎𝜎2)
𝑖𝑖

 

𝑑𝑑 = min
[𝑥𝑥𝑥𝑥]

��𝐦𝐦�𝐳𝐳 −𝐦𝐦[𝑥𝑥𝑥𝑥]� given 𝐦𝐦[𝑥𝑥𝑥𝑥] is occupied� 

(36) 

For our example,𝑃𝑃(𝐳𝐳(𝑡𝑡𝑘𝑘)|𝐱𝐱𝑑𝑑(𝑡𝑡𝑘𝑘),𝐦𝐦) is the smallest. Thus, off all four options, (b) is the most likely match. 
Using the maximum likelihood criterion. 

This laser scan matching process can also be formulated using a cost criterion that must be minimized: 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 19 

 

 

 𝒞𝒞�𝐑𝐑𝑘𝑘
𝑀𝑀 , 𝐭𝐭𝑘𝑘𝑀𝑀� = ��1−𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝐑𝐑𝑘𝑘𝑀𝑀𝐩𝐩𝑖𝑖(𝑡𝑡𝑘𝑘) + 𝐭𝐭𝑘𝑘𝑀𝑀��

2
𝐾𝐾

𝑖𝑖=1

 (37) 

where  𝐑𝐑𝑘𝑘
𝑀𝑀 and 𝐭𝐭𝑘𝑘𝑀𝑀 are the rotation and translation from the laser scan frame to the local map coordinate frame, 

and 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎis smooth version of the probability values in the local submap of the occupancy grid. Equation 
(37) can be solved using a numerical solver. For example, Google cartographer [21] uses the Ceres solver [8] 
to estimate the rotation and translation within a submap. 

A good example of what happens when a loop closure function is not included is shown in Figure 5-6. This 
figure shows a 2D map generated using a small UAV (sUAS) equipped with a laser range scanner mounted 
and flown in an indoor office environment using a grid-based SLAM method (Ohio University Stocker 
engineering building).  

  

Figure 5-6 (left) Small UAV mapping results for Ohio University Stocker Center third floor using HectorSLAM 
[22]; (right) sUAS mapping results for Ohio University Stocker Center third floor using Google Cartographer [21] 

The lack of loop closure can be easily observed at locations 1 and 2 where map distortion is apparent. This 
effect can be attributed to a bias in the pose estimate when the sUAS returns to location 1 (and location 2) due 
to the inherent dead-reckoning behavior of SLAM and possible lack of observability in the along-track 
direction due to similarity in the environment (i.e., lack of sufficient features). 

Alternatively, Figure 5-6 (right) shows the results for an FGO-based method that includes loop-closure such 
as Google cartographer; they do not suffer from these artifacts. The larger map in Google cartographer consists 
of numerous smaller submaps related using relative poses that are re-estimated using non-linear solvers (FGO) 
such as Ceres when an area is revisited. During this mapping mission, the sUAS did not fly through the hallway 
between locations 3 and 4 resulting in an unresolved misalignment between the two visible hallway segments. 
It is expected that this misalignment would have been resolved by loop closure optimization if the sUAS would 
have completed its mission and flown the extent of the hallway. 

 
Figure 5-7 (a) sUAS equipped with two laser scanners and a camera flying in a challenging environment; (b) 

Vision-based SLAM results, (c) Laser-based feature-less SLAM results from the two laser scanners. 



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 20 STO-EN-SET-274 

 

 

Figure 5-7 shows the results of applying both laser-based and vision-based SLAM techniques onboard an 
sUAS [23]. 

Many SLAM approaches have been developed that exploit the cooperation of multiple vehicles/agents (ground 
or air), a.k.a. Cooperative SLAM (C-SLAM) or distributed SLAM [24][25]. Most of these methods focus 
extensively on the merging of the maps formed by the individual members or agents using the exchange of 
measurements or knowledge of common regions and objects, or by exchanging the maps and aligning them 
using point feature matching, scan matching or other map matching techniques.  

6.0 SUMMARY AND CONCLUSIONS 

This paper gives an overview of particle filters, factor graph optimization methods, and simultaneous 
localization and mapping focusing on the vehicle navigation problem. The discussed methods can be used as 
the underlying estimator when performing PNT in environments where sensor integration is required to meet 
the required navigation performance for the application. Furthermore, all discussed methods lend themselves 
for cooperative estimation either by fusing the individual states of the cooperating vehicles using, for example, 
CI, or directly by collection the measurements from others and setting up a factor graph. It is important to 
always consider of the chosen method is appropriate in terms of computation requirement (e.g., PF versus EKF 
or UKF). 

7.0 REFERENCES 

[1] International Civil Aviation Organization. ICAO Doc 9613, Performance-based Navigation (PBN) 
Manual. Technical report, International Civil Aviation Organization, Montreal, 2008.  

[2] P. S. Maybeck, Stochastic Models, Estimation and Control – Vol. II, Navtech Books and Software Store, 
1994. 

[3] B. Ristic, et al., Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, 
2004. 

[4] R. P. S. Mahler "Optimal/robust distributed data fusion: a unified approach", Proc. SPIE 4052, Signal 
Processing, Sensor Fusion, and Target Recognition IX, (4 August 2000); 
https://doi.org/10.1117/12.395064. 

[5] M. B. Hurley, “An Information Theoretic Justification for Covariance Intersection and its 
Generalization,” in Proceedings of the 5th Inter- national Conference on Information Fusion (Fusion 
2002), Annapolis, Maryland, USA, Jul. 2002. 

[6] O. Hlinka, O. Sluciak, F. Hlawatsch, M. Rupp,  “Distributed data fusion using iterative covariance 
intersection,” Proceedings of the 2014 IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP), 2014. 

[7] R. Kuemmerle, et al., “g2o: A General Framework for Graph Optimization,” Proceedings of the IEEE 
International Conference on Robotics and Automation (ICRA), 2011. 

[8] S. Agarwal, K. Mierle, et al., “Ceres Solver”,  http://ceres-solver.org. 

[9] F. Dellaert and GTSAM Contributors, “borglab/gtsam,” Georgia Tech Borg Lab, 
https://github.com/borglab/gtsam, May, 2022. 

[10] H. Martiros, et al., “SymForce: Symbolic Computation and Code Generation for Robotics,” Proceedings 
of Robotics: Science and Systems, 2022. 

https://doi.org/10.1117/12.395064
http://ceres-solver.org/
https://github.com/borglab/gtsam


PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

STO-EN-SET-274 5 - 21 

 

 

[11] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with applications to large-scale mapping of 
urban structures,” Int. Journal of Robotics Research, 25(5-6):403, 2006.  

[12] F. van Graas, A. Soloviev, “Precise Velocity Estimation Using a Stand-Alone GPS Receiver,” 
NAVIGATION: Journal of The Institute of Navigation, Vol. 51, No. 4, 2004. 

[13] J.Sola, J. Deray, D. Atchuthan, “A micro Lie theory for state estimation in robotics,” 2018. 

[14] Guivant, J., E, Nebot, S. Baiker, “Localization and Map Building Using Laser Range Sensors in Outdoor 
Applications,” Journal of Robotic Systems, 2010, 17(10), pp. 565-583. 

[15] Thrun, S., Burgard, W., & Fox, D., Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), 
Cambridge: MIT Press, 2005. 

[16] Dissanayake, G., Williams, S., Durrant-Whyte, H., & Bailey, T. , “Map Management for Efficient 
Simultaneous Localization and Mapping (SLAM),” Autonomous Robots, 12 (3), 2002,  pp. 267–286. 

[17] D. Hähnel, D. Fox, W. Burgard, S. Thrun, "A highly efficient FastSLAM algorithm for generating cyclic 
maps of large-scale environments from raw laser range measurements," Proceedings of the Conference 
on Intelligent Robots and Systems (IROS), 2003. 

[18] Kaess, M., A. Ranganathan, and F. Dellaert, "iSAM: Incremental smoothing and mapping," IEEE 
Transactions on Robotics, Vol. 24, No. 6, 2008, pp. 1365-1378. 

[19] Moravec, H., and Elfes, A., "High Resolution Maps from Wide Angle Sonar," IEEE International 
Conference on Robotics and Automation (ICRA), 1985, pp. 116-121. 

[20] Elfes, A., "Using Occupancy Grids for Mobile Robot Perception and Navigation," IEEE , 22 (6), 1989, 
pp. 46-57. 

[21] Hess, W., D. Kohler, H. Rapp, and D. Andor, “Real-Time Loop Closure in 2D LIDAR SLAM,” 
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2016. pp. 1271–
1278. 

[22] Kohlbrecher, S., O. von Stryk, J. Meyer, U. Klingauf, “A Flexible and Scalable SLAM System with Full 
3D Motion Estimates,” Proceedings of the IEEE Conference on Safety, Security, and Rescue Robotics, 
2011. 

[23] M. Uijt de Haag, J. Robinson, J. Huff, A. Schultz, “Assessing Indoor Environments with sUAS through 
Real-Time Virtual Reality and Assured Navigation,” Proceedings of the ION International Technical 
Meeting (ITM), Reston, VA, January 2018. 

[24] Y. Rizk, M. Awad, E. W. Tunstel, “Cooperative heterogeneous multi-robot systems: A survey,” ACM 
Computing Surveys (CSUR), 52(2), 1-31, 2019. 

[25] H. C. Lee, S. H. Lee, T. S. Lee, D. J. Kim, B. H. Lee, “A survey of map merging techniques for 
cooperative-SLAM,” Proceedings of the IEEE 9th International Conference on Ubiquitous Robots and 
Ambient Intelligence (URAI), pp. 285-287, 2012. 

  



PNT Fusion Algorithms Part 2: Particle Filters, Factor Graphs & SLAM 

5 - 22 STO-EN-SET-274 

 

 

 

 
  


